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When a plane acoustic wave or a wave generated by a point source of oscillations is diffracted by an absolutely rigid cone of  
arbitrary shape, a wave with a spherical wavefront is produced which spreads out from the vertex of the cone as from the centre. 
For a narrow-angle cone, with certain limitations on the directions in which observations are made, explicit approximate formulae 
are constructed for the radiation patterns of this wave, which generalizes the formulae obtained in [1, 2] for a circular cone. 
© 1996 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose an absohltely rigid cone ~ has a vertex C, which coincides with the odg~a of  coordinates. 
We will assume that the wave process is described by Helmholtz '  equation (A + ~ )  u = 0, where u 
is the velocity potential, and a wave u i propagating either from a point source situated at the point r0 

0 0 0 = (xl, x2, x3) is incident on the cone, in which case 

u i = (4n R) -t exp( ikR) ,  R = Ir - r01, r = (x~, x 2, x 3) (1.1) 

or a plane wave, in which case 

u i = exp(-ik(to 0, r)), [to01 = 1 (1.2) 

The unit vector 0~0 indicates the direction in which the plane wave propagates. We will assume that 
in the first case, when formula (1.1) holds, the vector r0 is also parallel to the vector COo, or more correctly 

r0 = to0ro, r0 =lr01 

Suppose Us is the wave scattered by the cone. Then the velocity potential u = u i + u s must satisfy 
the no-flow condition 

Ou I =0 (1.3) 

where 0~  is the surface of the cone ~,  and 0/O~ represents differentiation along the normal, Helmholtz's 
equation, Meixner's condition of the finiteness of the sound energy in the neighbourhood of C, and 
the corresponding form of the radiation conditions. 

As we know, ui generates, among other waves, a spherical w a v e  Gdiff, which spreads out from the 
vertex of the cone C as from the centre. We have the following formulae for Gd~f 

Gtt) = (2krro)-I  e xp ( i k ( r  + r 0 )) f(to, to o ) + O((k r) -2 ) (1.4) aifr 

Gt2~ = 2n(kr)-t  exp ( i k r )  f(to, to0)+ O((kr )  -2) diff 

in cases (1.1) and (1.2) respectively. Here  to(I co I = 1) is the unit vector in the direction in which 
observations are made (i.e. the radius vector of the point of observation r = rio, kr >> 1). Knowing the 

t!'tild. Mat. Mekh. Val. 60, No. 1, pp. 72-78, 1996. 

67 



68 V . M .  Babich 

radiation patternf(to, too) we can obtain Gdq~ff (j = 1, 2) in the first approximation. The purpose of this 
paper is to derive an approximate formula for f(to, too) in the case of  a narrow-angle cone. 

2. S M Y S H L Y A Y E V ' S  F O R M U L A  F O R  f(co, COo) 

Smyshlyayev [3]~f has derived the following general formula 

f ( to ,  t.Oo) = i ~ e_iWg(oj , too,V)  v d v  (2.1) 
g y  

The notation used here, which is similar to that used in [3], needs to be explained. Suppose S 2 is the 
unit sphere with centre at C. Suppose N is the part of S 2 which does not belong to the cone ~,  i.e. N 
= $ 2 ~  (see Fig. 1) and g is Green's function of the Helmholtz operator for the region M, or more 
accurately g is the solution of the problem 

( l) :o A s + v ~ - -~ g '= 8( to  - to0) ,  ~ 'm a~ 

1 O (sin0_~0_) + 1 0 2 
As = sin 2 0 00 sin s 0 ~kp 2 

(2.2) 

The differentiation is carried out with respect to the coordinates of the point to, ON is the boundary 
of the region N C S 2, too e N is a fixed point, and O/Om means differentiation along the sphere along 
the normal to ON. 

The integration in (2.1) is carried out along the contour 7 in the complex plane v enveloping all the 
poles of the function g. The function f(co, too) has singularities corresponding to breakdowns in the 
regularity of the field of the rays of geometrical optics. This is the case, for example, for points which 
satisfy the condition 

min (dist(to, s) + dist(s, too)) = n (2.3) 
se~N 

(dist (a, b) is the distance between a, b (a, b ~ S 2) along the sphere $2). The direction along which the 
wavefront reflected from the surface of the cone touches the wavefront scattered by the vertex of the 
cone satisfies condition (2.3). 

We will consider the following case, which is important in practice, when instead of (2.3) we have 
the inequality 

rain [dist(to, s) + dist(s, to 0)] > g (2.4) 
scan 

In this case (2.1) can be replaced [3] by 

f ( to ,  too ) = - i I r~ ~ e~Xg r (to, too) x dx  (2.5) 
- o o  

1 p ~ + i x ( - c o s 6 ) + g r  (2.6) 
g = g o + g r =  4chgx - 

O 
(2.7) 

Here gr(C0, too) is the so-called reflected part of Green's function, Pv is Legendre's function, g0 is Green's 
2 function of the operator As- (x 2 + 1/4) for the case when ON = O and N = S ,  i.e. go is Green s function 

for the whole sphere. 
Note that another approach to the problem of the diffraction of waves by an arbitrary cone was 

proposed in [4]. 

tSee also: SMYSHLYAYEV V. E On the diffraction of waves by cones at high frequencies. Leningrad, Optiko-Mekh. Inst., 
Preprint E-9-89, Leningrad, 1989. 
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3. THE O U T E R  AND INNER R E G I O N S  

If the diameter of the region cut off by the cone ~ from S 2 (i.e. the region $2~7), is small, the cone 
will be said to be narrow-angled. Suppose this diameter is of the order of e, where e is a small 

parameter, and hence the region $2~7 itself will be denoted by t~. We will assume that the point O 
t~. Drawing a tangential plane R 2 at the point O and projecting 6~ onto R 2, we obtain a certain 
region r~ C R 2. Suppose xl, x2, x3 is a coordinate system in 1~ 3 with origin at the point O, while the x3 
axis is directed into the sphere. The equation of the sphere will obviously have the form x3 = 1 - ~/(1 
- ~ - x22) and in the region of the point O the variables xl, x2 can be regarded as coordinates on the 
sphere. 

We will assume that the boundary O~ of the region ~:~ is "small", or, more exactly, that the points 
X1, X 2 E ~K e are obtained by a similar transformation from the points X1, X 2 of the fixed close curve O~: 

Ol(~={(Xi,X2):Xi--EXi, i=1,2, (Xt,X2)~Or}, e>0 ,  e < l  

i.e. Or~ is the result of a similar transformation of the fixed curve 0~: with similitude coefficient e. 
We will further obtain, using the well-known method described in [5], the leading term of the 

asymptotic form o:fg, as e ~ 0. Substituting it into (2.5) we obtain an approximate expression for f((o, 
%) in terms of elementary functions. To obtain the asymptotic form ofgr a correct choice of the form 
of the asymptotic expansion in the region Or~ (the inner region) and outside a small neighbourhood of 
0r~ (the outer region) is of fundamental importance. 

Suppose El, E2, a, ~ (0 < a < 13 < 1) are certain positive constants. For sufficiently small e we have 
E1Ea > E2 El3. 

We will refme the idea of the outer region: this is the region that is obtained if we remove from N 
all points which project into the circle 

r=~]x~ +x~ ~< E2E ~ (3.1) 

In view of the fact that e is a small parameter, while the coordinates of the curve Or~ are of the order 
of e, the curve 0 ~  lies inside the circle (3.1). 

The inner region is the region on the sphere which is obtained if we remove from the points of the 
sphere which project into the open circle 

r = C  +x~ < Ele e (3.2) 

the points of the closed region ~. 
The equation and boundary conditions in the inner region are best considered in extended coordinates, 

for which we must write both the equation and the boundary condition (2.7) in Xl, x2 coordinates. 
2 We will begin from the equation. Consideringxl, x2 as coordinates on the sphere S ,  we initially obtain 

the square of the differential of the length of an arbitrary curve on S 2 
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3 2 2 
~, (dXh)2 = ~ (dxi)2 + dxj  : = a(idxidx j 

h=l i=l 
(3.3) 

xixj 
aij = 1_-~1-_." x2 +Sly (3.4) 

Here, and also henceforth, summation over repeated indices is assumed. The operator A~ (see (2.7)) 
has the following form in xl, xz coordinates 

1 O (aiJ r-- O ") 
As = - ~ a  ~ x ~  ~a  0--~-jJ' a=det l  aij tl 

where II t~ ij II is the inverse matrix to II txij II- 
Equation (2.7) can be written as follows in extended coordinates X / =  xge (i = 1, 2) 

(3.5) 

I I 0xj j == =0 (3.6) 

A = det(I + O(e 2)) = 1 + O(e 2), ~ -  A ij = 8ij + O(e 2) 

Here I is the unit matrix and O(e 2) are different algebraic expressions of X/and e which, when X / =  
0(1) and e ~ 0 are of order no less than e 2. 

The boundary condition on the boundary 0r,~ in xi coordinates has the form 

Ogr cos~xja  ij = -  Ogo cos~xja  ij (3.7) 
Oxi Oxi 

Here cos ~xj ( j  = 1, 2) are the direction cosines of the usual Euclidean normal to the curve 0r,~ in 
the R 2 plane. 

Introducing extended coordinates X/, we obtain that boundary condition (3.7) must be satisfied on 
the curve OK, which does not depend on the small parameter e. This will have the form 

o=, °so cos= , A ij OX i cosnXj = - A  ij OX i (3.8) 

4. THE O U T E R  AND I N N E R  EXPANSIONS 

In the outer region we will seek an expansion Ofgr in the form of a series in multipoles. Suppose go 
is the fundamental solution corresponding to the operator As -  (~2 + 1/4) 

go = g o ( t ° , ~ 2 ) = - (  4ch~x)- l  P I (-c°s01), 01 =dist(t°,t°l) 
--+ix 2 

where to1 = o~l(x °, x °) belongs to the circle (3.2). 
The outer expansion will be sought in the form 

2 The arguments of the function go and its derivatives are the points co, O ~ S ,  where 11,12, B2j,. • • 
are coefficients to be determined. The functions Ogo/OX °, 02go/aX° i ar ° (differentiation is carried out 
with respect to. the coordinates of the point O) are naturally called multipoles. 
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For the inner expansion we put 

g~ = **Z Uj(X1,X2)e  j,  Xi = xi  (4.2)  
j=l 

and we match the asymptotic expansions (4.1) and (4.2) in the region (see Section 3) 

E2e I~ < r < El~. a, Ej = const, 0 < Ix < 13 < 1 (4.3) 

We will now construct the terms of the series (4.1) and (4.2) using the well-known method described 
in [5]. 

We formally substitute series (4.2) into Eq. (2.7), assuming that the operator As is written in)(/variables 
(see (3.6)). Equating terms of the order of 1/e to zero, we obtain 

AU,=0,  A = 0  z / o X ~ + o  2/3X2 z (4.4) 

In region (4.3)R--- ~/(X 2 + X 2) ---> ~, while ~/(x 2 + ~ )  --> 0 as e ---> 0. Taking into account the 
fact that expansions (4.1) and (4.2) in region (4.3) must be asymptotically equivalent and that go N 
(2~)-11n r as co ---> 0, we obtain, as R ---> 

U t ~ (2re) -I B 1 In RE+ O(R -l) (4.5) 

Boundary condition (2.7) can be written in X/coordinates as follows: 

1 Ai r Og r ~ = - l A i  j Og o at ~" Oxj cos h xi cos,~ xi 
e OXj 

(4.6) 

where n is the normal to the curve 0~:. To fix our ideas we will assume that n is the outward normal to 
the finite region • C R 2, bounded by the curve O~:. We replace the function go by its expansion in a 
Taylor series in the neighbourhood of the point O 

go=Do+Dix i+ l /2Di j x i x j+  .... Do=go(O3o,O), Di=(Ogo/OXi)o... (4.7) 

Taking relations (4.2), (4.6) and (3.7) into account we obtain 

OU~ / On]o~ = - DiOX i /On (4.8) 

i.e. U1 is the solution of the Neumann problem (4.4), (4.5) and (4.8). 
Using the fact that the integral of the normal derivative of an harmonic function over a dosed curve 

does not change when this curve is deformed, we can prove that for an arbitrary circle ~ + xz z = R z, 
where R is so large that ~: lies completely inside the circles Xl 2 + ~ < R 2, we have the equation 

0U1 dE = 0 (4.9) 
x? +x :  2 = R 2 On 

Taking the limit in the last equation as R ---> ~, we obtain that B 1 = 0. 
The asymptotic form of the solution of the Neumann problem as R = ~/(X 2 + X 2) ---> 00. 

On at = - [ = O(1 / R) (4.10) AVj=0, 0Vj/ O X i / 0 n ~ ,  VjR__,_ 

obviously has the form 

Vj = djhO In R / OX h + O(1 / R 2 ) (4.11) 

where djh are certain coefficients. Formula (4.8) now gives 
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U 1 = DidihO In R / OX h + O(1 / R 2 ) 

Comparing (4.12) with expansion (4.1) in the ring (4.3), we obtain 

(4.12) 

1 
2re B 2 j O l n r /  OxJ - Did ihOlnR/  bXh' B2) = -  2~Didij (4.13) 

The matrix II dij II is an interesting global characteristic of the region ~:, which we will discuss below. 
We will now find the coefficient B2 and function U2 (see 4.1) and (4.2)). For U2 we again have Laplace's 

equation. Equation (4.6) and expansion (4.7) lead to the boundary condition 

3U 2 / On ~ = - DijXiOX j / On (4.14) 

The behaviour of U2 at infinity can be found from the asymptotic equivalence of expansions (4.1) 
and (4.2) in the ring (4.3). We obtain 

U z = ( Z n ) - t B z l n r + O ( I / R 2 ) ;  R=~U~I + X  2,  r = R E  (4.15) 

Note that, in view of the fact that U2 is harmonic, we have 

f 0u2 0u2 - ds= I 
£R 

Taking the limit here as R ---> oo and using relation (4.15) and (4.16) we obtain 

Oxj 
- ~ DqX i • ds  = B 2 

Using Green's integral formula, we can convert this relation to the form 

B z  = - [. dXldX280Di j  = - ( / ~ 1  + D 2 2 )  mesl~ 
K 

(4.16) 

where mes ~: is the area of the region ~:. The formulae B1 = 0, (4.13) and (4.16) give the required 
expressions for the leading terms of the expansion (4.1). 

The quantities dij (see (4.13)) form a tensor, which was considered in [6] in connection with other 
problems. We know that the matrix of this tensor ]1 dij II is symmetric and positive-definite. For a similar 
expansion (or contraction) of the region ~ with a coefficient of proportionality e, the components of 
the tensor dij are multiplied by E 2, which enables us to "remove" the parameter e from the final formula 
forgr 

gr =- [-(D!l + D22 ) mes ~¢~go (to, O) - 2reDid 0 ( r, E ) Og o / Ox ° ]+... (4.17) 

D i =Ogo( too ,O) /Ox  O, Dii = 0 2 g o ( t o o , O ) / O x  °2 

(the differentiation is carried out with respect to the coordinates of the point,O). 
Expression (4.17) is symmetrical about the points Oo and to by virtue of the symmetry of the matrix 

II dij(r~) II and the set equations 

l~l + D22 = Asgo = ( x2 + I//4) go(°), O) 

The symmetry of the principal part of the outer expansion ofgr might have been expected since the 
function gr is symmetric with respect to COo and to. 
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5. AN E X P R E S S I O N  F O R  T H E  R A D I A T I O N  P A T T E R N  

Expression (4.111 , where gr has the form (4.17), gives the required formula 

f ( to, too ) --- - ni _.+T e~t" - (  DI , + D22 ) mes ~Z~go - 2 rc Didij Ox o ] "c d ~ 

1 
g ° ( t o ' O ) -  4chn-~ P_~+i~(-cos0), 0=dist(to, O) 

Here  Di and D//hetve the form (4.20). 
The integrand depends in a quite complex way on x, but, using the equation 

+~ s h ~  P_~+i~(-cos0) P_~+i~ ( -  cos 0') ~xd'r 2 

S ch 2 n'~ cos 0 + cos 0" 

(5.1) 

(5.2) 

(5.3) 

which holds when 0 + 0' > n, 0 i> 0, 0' 1> 0, all the integrals in (5.1) can be evaluated explicitly [7]. 
We obtain 

i 1 + c o s 0 c o s 0 '  i sin0sin0" 
f ( to ' to°)  = -  ~-~2~ 2 mesl~t (cos0+cos0 ' )  3 2~ diJ(~)l i l~ (cos0+cos0 ' )  3 (5.4) 

0 = dist(to, O), 0' = dist(to0, O) ll, 12 (respectively If, l~) are the components in the xl, x2 system of 
coordinates of the unit vector which is tangential, at the point O, to the arc of  the great circle toO 
(respectively to00). It is assumed that on the arc toO (respectively to00) the direction is chosen to be 
from to to O (respectively from too to O). Formula (5.4) is the main result of this paper. 
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